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1 Three line summary

� Given open U ⊂ Rd the Sobolev spaces W k,p(U) are complete spaces
of weakly di�erentiable functions.

� Smooth functions are dense inW k,p(Ω) if Ω is smooth and bounded.
This lets us perform formal manipulations as if everything is smooth
and then take limits. In particular, we can extend and restrict

functions to ∂Ω.

� Functions in W k,p(Ω) enjoy various inequalities. Cashing in di�eren-
tiability for integrability we can compactly embed

W k,p(Ω) ↪→ Lq(Ω).

Where q ≡ q(d, k, p) decreases with the dimension d, increases with
di�erentiability k and integrability p, and is larger than p.

2 Why should I care?

Sobolev spaces allow us to extend the notion of di�erentiability to a wider
class of functions. The fact that these spaces are complete and compactly em-
bedded in Lq spaces is an important tool to extract convergent sub-sequences.
This is useful when solving di�erential equations as a common technique is
to take a Cauchy sequence whose limit is the solution to the equation.

1



3 Notation

� In this post we will be dealing with functions over a variety of domains.
To facilitate interpretation of the notation we will stick to the conven-
tion that K is a compact set, U, V are open sets, and Ω is an open
bounded set with C1 boundary.

� Given a topological space X and a subset A ⊂ X we abbreviate A is
dense in X with the topology of X by

A = X.

We stress that in practice X may be itself a subset of some larger space
Y (for example X = Hs(Rd) and Y = Lp(Rd)) . However, the above
notation will always mean the closure with the topology of X and not
Y .

� A related notation is we will write given an ∈ A

lim
n→∞

an = x ∈ X.

To mean the limit in the topology of X.

� Given two sets A,B we write A ⋐ B and say that A is compactly

included in B if A is compact and strictly included in B.

� We also write

A+B = {x+ y : x ∈ A, y ∈ B} .

� Given a topological vector space X we write X ′ for the dual of X and
denote given ∈ X ′, φ ∈ X the duality pairing as

(φ,w) := w(φ).

� We will always write α for a multi-index α ∈ Nd and use the notation

Dαf := ∂α1
1 · · · ∂αd

d .

In the case α = 0 we use the convention D0 = f .



� Given a space of functions X with domain A and B ⊂ A we write

X|B := {f |B : f ∈ X} .

� Given two quantities M,N we write M ≲ N to mean that there exists
some constant C independent of M and N such that M ≤ CN .

� We write Br(x) for the ball centered at x with radius r and Br if x = 0.
The space where the ball is contained depending on context.

4 Introduction

In practice, one often wants to solve a di�erential equation

Lu = f on D. (1)

Where D is some domain in Rd. In a previous post on the Fourier transform
we saw how to de�ne the Sobolev spaces Hs(D) when D is the whole Eu-
clidean space Rd or the torus Td. These spaces correspond to s-times weakly
di�erentiable functions and we saw how these spaces could help us solve (1).
However, in practice D may be an open set in Rd or even some d-dimensional
manifold with a boundary condition

u|∂D = g. (2)

Note that equation (2) is a priori ill-de�ned as the Lebesgue measure of
∂D ⊂ Rd is zero. Thus, it is necessary to extend the theory to a wider class
of domains and to explain what we mean by the restriction of a function to
its boundary of de�nition.

4.1 A �rst attempt

Suppose for example D = U is an open set and u : U → R. Then, we can
try to de�ne Hs(U) using our knowledge of Hs(Rd) by:

1. Extending u by zero outside of U to form

ũ(x) :=

{
u(x) x ∈ U

0 x ̸∈ U
.
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2. Studying if ũ ∈ Hs(Rd). That is, as we saw in the previous post,
checking if

∥ũ∥2Hs(Rd) =

∫
Rd

⟨ξ⟩2s ̂̃u(ξ)2 dξ < ∞

3. Saying that u ∈ Hs(U) if and only if ũ ∈ Hs(Rd).

However, this runs into problems as is shown in the following example:

Example 1. Let U = (0, 1) and take u : (0, 1) → R de�ned to be identically
equal to 1. Note that u ∈ C∞(U) so we expect that u ∈ Hs((0, 1)) for all
s ∈ R. However, it holds that ũ = 1(0,1) with

̂̃u(ξ) = 1− e−2πiξ

2πiξ
.

As we can see, by substituting in our naive de�nition of Hs(U) gives that
u ∈ Hs((0, 1)) if and only if s < 1

2
. Thus, our program of extending u by

zero and studying the regularity of the extension is not going to work. The
reason for this is that, by extending by zero we introduce a discontinuity on
ũ at the boundary of U .

4.2 A second approach

Alternatively, we could also de�ne

Hs(U) = Hs(Rd)
∣∣
U
:=
{
f |u : f ∈ Hs(Rd)

}
.

As we will see later (Corollary 19) this is a better approach. However, it is
not optimal as it requires some conditions on U . For example, if U is not
smooth we cannot assert that C∞(Rd)

∣∣
U
= C∞(U).

5 Test functions and distributions

5.1 Seminorms and their topologies

We need a new approach. Motivated as in the previous post by duality we
should begin by de�ning what is meant by a weak derivative of a function u
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in Lp(U). If u, φ are smooth functions then we have by integration by parts

(φ,Dαu) :=

∫
D

φDαu = (−1)|α|
∫
D

(Dαφ)u+ boundary e�ects.

In the previous post, we used that

� If D = Rd we can take as our test functions φ ∈ S(Rd) and use that
φ multiplied by any function in L2 (u and its derivatives) vanish at
in�nity to get rid of the boundary e�ects.

� If D = Td we can take as our test functions φ ∈ C∞(Td) as the bound-
ary e�ect of periodic functions cancels out.

To obtain this cancellation on a general open D we need to impose that our
test function φ vanishes in a neighborhood of the boundary. That is we need
our test functions to have compact support.

De�nition 1. Let U be an open set, then we de�ne C∞
c (U) to be the space

of smooth functions whose support is some compact set K ⊂ U .

Another notation for C∞
c (U) is D(U) and it is often called the space of test

functions for reasons we will later see. Given a compact subset K ⊂ U we
de�ne for each k ∈ N

De�nition 2. Given a compact subset K of an open set U we de�ne

C∞
c (K) := {φ ∈ C∞

c (U) : supp(φ) ⊂ K} .

We endow C∞
c (K) with the topology generated by the countable family of

seminorms

∥φ∥Ck(K) := sup
x∈K

∑
|α|≤k

|Dαφ| , k ∈ N0 (3)

Later we will need to generate topologies when the family of seminorms is
uncountable.

De�nition 3. Let X be a vector space and let ρ ∈ P be a family of seminorms
on X. Then we de�ne the topology generated by P to be the topology
generated by the local basis

x+
{
ρ−1(Bϵ) : ϵ > 0

}
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The above topology is equivalent to the initial topology generated by the
family

{ρ(· − x) : x ∈ X, ρ ∈ P} .

We include some exercises to help the reader get more used to the topology
that arises. I recommended trying to solve them for a few minutes before
checking the hints.

Exercise 1. Write τP for the topology generated by P, Show that τP is the
coarsest topology that makes X into a topological vector space (TVS).

Hint. The fact that (X, τP) is a TVS follows from the triangle inequality and
homogeneity of seminorms. The fact that it is the coarsest that makes ρ
continuous is that ρ−1(Bϵ) must be an open neighborhood of the origin and
in a TVS, by continuity of the sum, translation of an open set must be open.

Exercise 2. Show that (X, τP) is locally convex. That is, every point has a
local basis of convex sets

Hint. Show that ρ−1(Bϵ) is convex.

Exercise 3. Show that the topology (X, τP) is determined by the following
property.

� Given a net x• ∈ (X, τP) it holds that

limx• = x ∈ X ⇐⇒ ρ(x• − x) → 0 ∀ρ ∈ P .

Hint. The topology of any topological space is completely determined by the
convergence of nets. So it is enough to show that the property holds. The
implication holds by the continuity of ρ, the reverse follows from being able
to �t x• into any basic set x+ ρ(Bϵ).

Exercise 4. Show that C∞
c (K) is complete and thus a Fréchet space.

Hint. The topology is metrizable as the family of seminorms is countable
Use Exercise 3 to show that if φn ∈ C∞

c (K) is Cauchy then the sequence of
derivatives Dαφn converge uniformly to φ(α) ∈ C0

c (K) for all α. It remains
to show that

φ(0) = lim
n→∞

φn ∈ C∞
c (K).

To do so use the fundamental theorem of calculus and induction.

https://en.wikipedia.org/wiki/Topological_vector_space
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Using C∞
c (K) as a stepping stone we can build a topology on C∞

c (U). We
use the approach in Terence Tao's blog post on distributions. Let us call a
seminorm on C∞

c (U) restrictable if it is a continuous function on C∞
c (K)

for all K ⊂ U .

De�nition 4. The topology on C∞
c (U) is the one generated by all the re-

strictable seminorms on C∞
c (U). We call this topology the smooth topology.

Exercise 5. Give an in�nite restrictable family of seminorms.

Hint. Valid answers include all the Lp(U) and Ck(U) norms.

Exercise 6. Show that C∞
c (Ω) with the smooth topology is a locally convex

topological vector space (LCTVS).

Hint. See Exercises 1-2

Exercise 7 (Smooth convergence is equal to local convergence). Show that
φn → φ ∈ D(U) if and only if there exists a compact set K such that for all
n the support of fn and f are in K and

lim
n→∞

φn = φ ∈ C∞
c (K).

Hint. Given any sequence a = {aj}j∈N ∈ R+ and an increasing set of compact
sets Kj with U =

⋃
j∈N Kj show that

pa(φ) := sup
j∈N

aj
∑
|α|≤j

∥Dαφ(x)∥L∞(U\Kj)
.

Is a restrictable seminorm. Why does this prevent the support of φn escaping
to in�nity? Now knowing all functions are supported in some K use that
∥·∥Ck(K) is restrictable to conclude the proof.

Exercise 8 (Completeness). Show that C∞
c (Ω) with the smooth topology is

complete.

Hint. Given a Cauchy net φ• ∈ C∞
c (U) show as in Exercise 7 that the support

of φ• cannot escape a compact set K. Conclude using the completeness on
C∞

c (K) and Exercise 3.

Exercise 9. Show that C∞
c (Ω) with the smooth topology is Hausdor�.

https://terrytao.wordpress.com/2009/04/19/245c-notes-3-distributions/#:~:text=is%20clearly%20a-,vector,-space.%20Now%20we


Hint. The initial topology of a set of functions that separates points is Haus-
dor�.

Observation 1. The topology on C∞
c (U) is not metrizable (note the family

of seminorms used to generate it is not countable) and as a result C∞
c (U) is

not a Fréchet space. This and more can be found in [1] page 286.

The construction of the topology on C∞
c (U) is a bit technical a more intuitive

construction would be to de�ne the family of seminorms

∥φ∥j := sup
|α|≤j

∥Dαφ∥L∞(U) .

And then de�ne the topology on C∞
c (U) to be the one generated by this

family of seminorms. This has the following problem.

Exercise 10. Show that C∞
c (U) with the topology generated by ∥·∥j is not

complete.

Hint. Construct a sequence that is Cauchy with respect to every ∥·∥j whose
support escapes to in�nity.

Using the smooth topology we can now work with the dual of C∞
c (U)

De�nition 5. We de�ne the space of distributions to be

D′(U) := (C∞
c (U))′.

And give it the weak-∗ topology.

Observation 2. The inclusions

C∞
c (U) ↪→ C∞

c (Rd) ↪→ S(Rd)

are continuous. As a result, S ′(Rd) ↪→ D′(U). That is, distributions are a
larger or more general class than tempered distributions.

Of course, not all smooth functions have compact support. Other (in this
case Fréchet) spaces of smooth functions are

C∞(U) :=

{
φ : ∥φ∥j := sup

|α|≤j

∥Dαφ∥L∞(U) < ∞, ∀k ∈ N

}

C∞
loc(U) :=

{
φ : ∥φ∥k,K := sup

|α|≤k

∥Dαφ∥L∞(K) < ∞, ∀k ∈ N, K ⊂ U

}

https://en.wikipedia.org/wiki/Weak_topology


Where, we give them respectively the topologies generated by ∥·∥k and ∥·∥k,K .
An equivalent characterization of D′(U) (see [2] page 241 ) is that, ω ∈ D′(U)
if and only if for all φ ∈ C∞

c (U) the operator φw de�ned by

(f, φw) := (φf,w), ∀f ∈ C∞(U), (4)

is continuous on C∞(U).

5.2 Locally integrable functions as distributions

In our post on the Fourier transform we saw that integrable functions could
naturally be considered as tempered distributions. The analogous is true for
distributions. In this case, since our test functions are compactly supported,
the functions we pair them up with only need to be locally integrable. We
recall the de�nition

De�nition 6. Given p ∈ [1,∞] we write Lp
loc(U) for the space of locally p

integrable functions,

Lp
loc(U) :=

{
f : ∥f∥Lp(K) < ∞, for all compact K ⊂ U

}
.

And endow it with the topology generated by the family of seminorms

ρKn,p(f) := ∥f∥Lp(Kn)
.

Where Kn are selected such that
⋃

n∈NKn = U .

Note that Lq
loc(U) ⊂ Lp

loc(U) for all q ≤ p.

Exercise 11. Show that Lp
loc(U) is a Fréchet space.

Hint. The topology is metrizable as the family of seminorms is countable. By
Exercise 3 if fn ∈ Lp

loc(U) is Cauchy then fn is Cauchy for all Lp(K) Dαφn

so converges to some fK ∈ Lp(K). Show that fK = f |K where f ∈ Lp
loc(U)

to conclude the proof.

Theorem 1 (Locally integrable functions as distributions). The mapping

T : L1
loc(U) ↪→ D′(U)

u 7−→ Tu.

https://nowheredifferentiable.com/2023-01-29-PDE-1-Fourier/#:~:text=One-,may,-verify%20that%20we
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De�ned by

(φ, Tu) :=

∫
U

φu, ∀φ ∈ C∞
c (U). (5)

Is injective and continuous.

Proof. We begin by showing that Tu ∈ D′(U). Firstly, the integral in (5) is
�nite as φ has compact support. Secondly, if we write K for the support of
φ, it holds that

(f, φu) =

∫
K

φfu ≤ ∥u∥L1(K) ∥φf∥C0
c (K) .

Which, by our equivalent characterization of D′(U) in (4) shows that Tu ∈
D′(U). We now show that the identi�cation is injective. That is, if∫

U

φu = 0, ∀φ ∈ C∞
c (U).

Then u = 0. Consider a compact set K ⊂ U and write g for the extension of
sign(u) by zero outside ofK. Clearly g ⊂ L1(Rd). Consider an approximation
to the identity ϕn (see Appendix B ) and set

φn := g ∗ ϕn.

By the approximation and smoothing of Propositions 6-7 we obtain a bounded
sequence with φn ⊂ C∞

c (U) for n large enough and such that

lim
n→∞

φn = g ∈ L1(Rd); ∥φn∥L∞(Rd) ≤ ∥g∥L∞(Rd) = 1.

By the �rst part of the above, we may take a subsequence φnk
converging

to g almost everywhere, and by the second we may apply the dominated
convergence theorem to obtain that

0 = lim
k→∞

∫
U

φnk
u =

∫
K

|u| .

As a result, u = 0 vanishes on K. Since K was any compact subset of U and
every open set can be written as a union of compact sets we conclude that
u = 0 as desired. The continuity of T follows from the estimate

(φ, Tu − Tv) ≤ ∥φ∥Ck
c (K) ∥u− v∥L1

loc(U) .

Where φ ∈ C∞
c (U) has support K (remember we are considering the weak-∗

topology on D′(U)).



Due to the above immersion, we will naturally consider L1
loc(U) as a subspace

of D′(U). In particular, any subspaces of L1
loc(U) such as Lp(U) or C∞(U)

can also be considered as distributions.

Exercise 12. Show that the L1
loc(U) is not closed in D′(U) .

Hint. Show that an approximation to the identity converges to a Dirac delta
δ0 ∈ D′(U). However δ0 ̸∈ L1

loc(U).

5.3 Support of a distribution

In the continuous case, the support of a function is well-de�ned as the small-
est closed set outside of which the set is zero. However, when working with an
equivalence class of functions the de�nition must be amended (consider for
example the support of 0 = 1Q). This is resolved by the following de�nitions.

De�nition 7. We say that a distribution w ∈ D′(U) vanishes on V ⊂ U if

(φ,w) = 0, ∀φ ∈ C∞
c (U) with supp(φ) ⊂ V.

And write

w = 0 on V.

If a function vanishes on a collection of sets it also vanishes on their union,
this extends to distributions.

Lemma 1. Let {Uα}α⊂I be a collection of open sets in U and suppose that

w = 0 on Uα, ∀α ∈ I.

Then w vanished on U :=
⋃

α∈I Uα.

Proof. Let φ have support in U . Then, by compactness, we can extract
a �nite covering {Ui}ni=1 of supp(φ). Let {ρi}ni=1 be a partition of unity
subordinate to Ui (see Appendix C). Then

(φ, ω) =

(
n∑

i=1

ρiφ,w

)
=

n∑
i=1

(ρiφ,w) = 0.

Since φ was any test function supported in U this concludes the proof.



By the just proved Lemma 1 we see that there is a largest set on which w
vanishes. As a result, we can make the following de�nition.

De�nition 8. Let w ∈ C∞
c (U) and let V be the largest open set on which w

vanishes. Then, we de�ne the support of w as

supp(w) = V c.

Since L1
loc(U) is naturally included in D′(U) we obtain in particular the def-

inition of support of a function f ∈ L1
loc(U).

Exercise 13. If f ∈ L1
loc(U) the support of f is the complementary of the

largest open set on which f is 0 almost everywhere. In particular, if f is con-
tinuous, the (distributional) support of f coincides with the classical support
of f .

Hint. We saw in Theorem 1 that f is 0 almost everywhere on some open set
if and only if it integrates to 0 against any test function on the open set.
This shows the �rst part and the second follows immediately.

6 Sobolev spaces

Now that we have built the space of distributions we can de�ne weak deriva-
tives of test functions just as we did with tempered distributions.

De�nition 9. Given w ∈ D′(U) we de�ne the (weak) α-th derivative by

(u,Dαω) := (−1)|α|(Dαu, ω).

Exercise 14. Show that Dαw ∈ D′(U).

Hint. Show that Dα is continuous on D(U) by using that ∥·∥Ck(U) are re-
strictable seminorms. Conclude by using that Dα de�ned on D′(U) is the
adjoint of Dα de�ned on D(U)

A prerequisite for the de�nition to make sense is that the notion corresponds
to that of classical derivative.

Exercise 15. Let u ∈ C1
loc(U) have classical derivatives u(i). Then u(i) = ∂iu.

https://en.wikipedia.org/wiki/Transpose_of_a_linear_map


Hint. By de�nition of weak derivatives and the chain rule, we have the dis-
tributional equality

Tu(i) − T∂iu = Tu(i)−∂iu = 0 ∈ D′(U).

The result follows by the injectivity of T .

De�nition 10 (Sobolev spaces). Given an open set U ⊂ Rd, k ∈ N and
p ∈ [1,∞] we de�ne the Sobolev space

W k,p(U) :=
{
u : Dαu ∈ Lp(U) ↪→ D′(Rd), ∀ |α| ≤ k

}
.

Where Lp(U) is identi�ed as a subspace of D′(U) by Theorem 1. We give
W k,p(U) the norm

∥u∥Wk,p(U) :=
∑
|α|≤k

∥Dαu∥Lp(U) .

That is, W k,p(U) is the space of k-times (weakly) di�erentiable functions
with derivatives in Lp(U). An equivalent norm that is also sometimes used
is

∥u∥Wk,p(U) ∼
k∑

j=1

∥∥∇ju
∥∥
Lp(U→Rdj )

.

The local Sobolev spaces W k,p
loc (U) are de�ned similarly, where we now only

require that

Dαu ∈ Lp
loc
(U), ∀ |α| ≤ k.

And now generate the topology by local seminorms analogously to Lp
loc(U).

Theorem 2 (Completeness of Sobolev spaces). For all k ∈ N and p ∈ [1,∞]
both W k,p(U) and W k,p

loc (U) are Banach spaces. If p ∈ (1,∞) these spaces are
also re�exive.

Proof. Let {un}∞n=1 be a Cauchy sequence in W k,p(U). Then, by de�nition of
the norm on W k,p(U) the sequence of derivatives Dαun is Cauchy in Lp(U)
for each |α| ≤ k and since Lp(U) is complete, converge to some functions uα

lim
n→∞

Dαun = u(α) ∈ Lp(U), ∀ |α| ≤ k.



To conclude, it su�ces to show that u := u(0) veri�es

Dαu = u(α).

This holds as, for every test function φ ∈ D(U)∫
U

u(α)φ = lim
n→∞

∫
U

u(α)
n φ = lim

n→∞
(−1)|α|

∫
U

unD
αφ = (−1)|α|

∫
U

uDαφ.

Where the �rst and last inequality follows from the continuous immersion of
Lp(U) in D′(U) (Hölder's inequality). Re�exivity follows from the fact that
the mapping

T : W k,p(U) −→ (Lp(U))|α|≤k

u 7−→ (Dα(u))|α|≤k.

Is an isometry, so Im(T ) is closed in the re�exive Banach space (Lp(U))|α|≤k

and thus re�exive (see [3] page 70). The case of W k,p
loc (U) is proved identically

now working with the local seminorms.

We now show some relevant properties of the weak derivative all of which are
to be expected knowing the classical case. These can be greatly generalized
with tools we will later develop.

Proposition 1 (Properties). Let u ∈ W k,p(U). Then it holds that

1. Leibniz rule: given φ ∈ C1(U) it holds that

∂i(uφ) = ∂iuφ+ u∂iφ.

2. The translation τyu(x) := u(x− y) ∈ W k,p(U) with Dατyu = τyD
αu.

3. Let u ∈ W k,p(Rd) and v ∈ L1(Rd). Then

Dα(v ∗ u) = v ∗Dαu

Proof. Points 1 and 2 follow by the de�nition of weak derivative and the
relevant properties for classical derivatives. The third property follows from
the second as, by Fubini,

(v ∗ u,Dαφ) =

∫
Rd

v(y)

(∫
Rd

Dαφ(x)u(x− y) dx

)
dy

= (−1)|α|
∫
Rd

v(y)

(∫
Rd

φ(x)Dαu(x− y) dx

)
dy = (−1)|α|(v ∗Dαu, φ).



A natural question is what relationship there is between Sobolev functions
and classical derivatives. For example, in 1 dimension a classical result is that
u ∈ W 1,1(a, b) if and only if u is absolutely continuous and has derivative
almost everywhere. A more general result is as follows.

Proposition 2 (Absolute continuity on lines). The following are equivalent

� u ∈ W 1,p
loc (U).

� u ∈ Lp
loc(U) is almost everywhere di�erentiable with classical derivatives

u(i) ∈ Lp
loc(U) and, given V ⋐ U it holds that u is absolutely continu-

ous on almost all (with respect to the Lebesgue measure on Rd−1) line
segments in V parallel to the coordinate axis.

The above holds true if we replace W 1,p
loc (U), Lp

loc(U) with their none local
counterparts W 1,p(U), Lp(U).

We omit the proof which can be found in [4] pages 39−43. The next exercise
show that, perhaps somewhat unexpectedly, to have u ∈ W 1,p(U) it is not
su�cient to require that u is di�erentiable almost everywhere with integrable
derivatives.

Example 2. The devil's staircase c is di�erentiable almost everywhere with
c′ = 0.

As a result, if c ∈ W 1,p(0, 1) then u would be constant (which it is not). In
fact, c ̸∈ W 1,p(0, 1) as it is not absolutely continuous.

7 Smooth approximation of Sobolev functions

The de�nition of weak derivative requires one to integrate against smooth
functions whenever trying to prove some property holds. This is somewhat
cumbersome. One would much rather

1. Work pretending all Sobolev functions are (classically) smooth.

2. Manipulate them according to the standard rules of calculus.

3. Obtain a result that holds for all Sobolev functions (and not just the
classically smooth ones).

https://en.wikipedia.org/wiki/Cantor_function


This process can be rigorously justi�ed by the density of various spaces of
smooth functions in Sobolev spaces. Or to use Tao's terminology, by giving
ourselves an epsilon of room.
In this section, we prove the relevant results. These rely heavily on the
analogous density results for functions in Lp(U) (see Appendix B). As a
result, they will not when p = ∞. We start without making any assumptions
on U and obtain two local-type results. Throughout this section we will often
be switching between di�erent open sets and, if following the proofs, making
some drawings is recommended.

Theorem 3 (Local approximation by smooth functions). Let u ∈ W k,p(U)
for p < ∞, denote its extension by zero ũ and let {ϕn}∞n=1 be an approxima-
tion to unity. Then

u = lim
n→∞

ũ ∗ ϕn ∈ W k,p(V ), ∀V ⋐ U.

As a result, for any V ⋐ U ,

C∞
c (Rd)|V = W k,p(U)

∣∣
V

and C∞
c (Rd)|U = W k,p

loc (U)

Proof. Given a compactly embedded set V ⋐ U we can take n large enough
so that V +B

(
0, 1

n

)
⊂ U and as a result, the convolution φn := ũ∗ϕn veri�es

(see Observation 6)

φn = u ∗ ϕn on V.

Thus, by the third property 1, for all |α| ≤ k

Dαφn = Dαu ∗ ϕn on V.

Taking limits we conclude from Proposition 6 that

lim
n→∞

Dαφn = Dαu ∈ Lp(V ).

To conclude density of C∞
c (Rd) in W k,p(U)

∣∣
V
consider K such that

V ⊂ K; K +B1/n ⊂ U.

And a bump function ηV ∈ C∞
c (Rd) that is equal to 1 on V and is supported

in K (this is possible by Uryshon's lemma and a convolution). Then,

φV,n := φnηV ∈ C∞
c (Rd); lim

n→∞
φV,n = u ∈ W k,p(V ).

https://terrytao.wordpress.com/2009/02/28/tricks-wiki-give-yourself-an-epsilon-of-room/


The density of C∞
c (Rd) in W k,p

loc (U) follows by taking Vn converging to U and
un := φVn,n as then, for every compactly included W ⋐ U

lim
n→∞

un = u ∈ W k,p(W ).

This concludes the proof as by Exercise 3 local convergence is equivalent to
convergence on every compactly included subset.

Observation 3. Note that, without further assumptions on U it is impossible
to get a global approximation by smooth functions de�ned on all of Rd. This
is because, the convolution f ∗ ϕn can only be de�ned on

U1/n :=

{
x ∈ U : d(x, ∂U) >

1

n

}
.

The above issue disappears when U = Rd. This shows that

Theorem 4 (Global approximation in Rd). It holds that for all p < ∞,

C∞
c (Rn) = W k,p(Rd).

Proof. Let η ∈ C∞
c (Rd) be equal to 1 on B1 and set ηn(x) := η(x/n). Then,

given u ∈ W k,p(Rn) and a smooth approximation to unity ϕn we obtain that,
by the triangle inequality

u = lim
n→∞

(u ∗ ϕn)ηn ∈ W k,p(Rd).

The following Theorem shows a global-type approximation.

Theorem 5 (Meyers-Serrin: local till boundary approximation). Let U ⊂ Rd

be open, then for all p < ∞

C∞
loc(U) ∩W k,p(U) = W k,p(U).

Proof. The proof is an instructive way of using a partition of unity to piece
together a local result (in this case Theorem 3) to get a global one. Let ϵ > 0
and consider an open covering {Vi}∞i=0 of U with V0 = ∅ and Vi ⋐ Vi+1. By
Theorem 17 we may obtain a partition of unity ρi subordinate to the �rings�



Ui := Vi+1 \Vi−1 (the trickery with the indices is so that the Ui actually cover
U). Where we relabel so that

supp(ρi) ⊂ Ui.

We have that ρiu ∈ C∞
c (Vi+1) with Vi+1 ⋐ U so by the local approximation

in Theorem 3 we can �nd ni such that

∥ϕni
∗ (ρiu)− ρiu∥Wk,p(U) = ∥ϕni

∗ (ρiu)− ρiu∥Vi+1
≤ ϵ

2i
.

Now we obtain the global approximation by taking

φ :=
∞∑
i=1

ϕni
∗ (ρiu) ∈ C∞

loc(U).

As then

∥φ− u∥Wk,p(U) ≤
∞∑
i=1

∥ϕni
∗ (ρiu)− ρiu∥Wk,p(U) ≤

∞∑
i=1

ϵ

2i
= ϵ.

Note that Theorem 5 is not strictly stronger than theorem 3 as it is not, in
general, possible to extend functions in C∞

loc(U) to C∞
c (Rn). As a corollary

of Meyers-Serrin's theorem, we obtain an equivalent de�nition of W k,p(U).

Exercise 16. Let U ⊂ Rd be an open set and p < ∞. Then W k,p(U) is equal
to the completion of C∞

loc(U) ∩W k,p(U) with the ∥·∥Wk,p(U) norm.

Hint. Use thatW k,p(U) is complete and that the completion of a metric space
is unique.

Before Theorem 5 was proved, both our original de�nition 10 (distributions
with derivatives in Lp(U)) and the one in Corollary 16 (closure of smooth
functions with Sobolev norm) were used as the de�nition of W k,p(U). But it
was unclear which was the �correct� Sobolev space. This debate was settled
by Meyers and Serrin who proved that, as we just showed, both are equal.
We now show an example of how these kinds of density results can be useful.
The following generalizes the second point of Proposition 1



Exercise 17 (Change of variables). Let V, U be open in Rd and Φ : V ≃ U
be bijective with Φ ∈ Ck(V → Rd),Φ−1 ∈ C1(U → Rd). Then for any
u ∈ W k,p(U) it holds that u ◦ Φ ∈ W k,p(V ) and the usual chain rule holds.
For example

∂i(u ◦ Φ) =
d∑

j=1

(∂iΦj)(∂juj) ◦ Φj. (6)

Hint. Give yourself an ϵ of room. By induction, it su�ces to consider the
case k = 1.We can approximate u on each compact K ⊂ U by a sequence
of functions un ∈ C∞

c (Rd). For un the equality 6 holds. Furthermore, by a
change of variables, (6) is continuous in u ∈ W 1,p(Ω) so we may pass to the
limit and obtain (6) for u on K. Since K was any, the equality also holds on
the whole of U .

In Exercise 17 it is important that Φ is di�eomorphic so that composition
with Φ is continuous.

Exercise 18. Show that the conclusion of Exercise 17 is false if we only
assume that Φ ∈ Ck(Rd) and do not impose invertibility.

Hint. Divide by zero.

Now we provide a �nal global approximation result in the case where the
domain is smooth (see Appendix D for a review on manifolds with boundary)
and bounded.

Theorem 6 (Global, smooth on boundary approximation). Let Ω be a
bounded open domain with C1 boundary, then for all p < ∞.

C∞
c (Rd)|Ω = W k,p(Ω).

Proof. The idea will be to locally translate points close to the boundary fur-
ther into Ω so that we can convolve with an approximation of unity and then
recover the global case with a partition of unity. We begin by �straightening
the boundary�. That is, since ∂Ω is C1, given x0 ∈ ∂Ω there exists an open
set V ⊂ Rd and a function γ ∈ C1(Rd−1) such that, relabeling and �ipping
the last coordinate axis if necessary

V ∩ Ω = {x ∈ V : xd > γ(x1, . . . , xd−1)} .



By considering a translation in the last coordinate ed = (0, . . . , 0, 1) and its
molli�cation by an approximation of unity ϕn

un(x) := u

(
x+

2

n
ed

)
; φn := un ∗ ϕn.

For n big enough we have that φ is well de�ned ans smooth onW0 := B 1
n
(x0).

Since translation is continuous on Lp(U) for p ∈ [1,∞) and by the behavior
of di�erentiation with convolution (see Proposition 1), for n large enough

∥u− φn∥Wk,p(W0)
≤ ∥u− un∥Wk,p(W0)

+ ∥un − un ∗ ϕn∥Wk,p(W0)
≤ ϵ.

Now, since Ω is bounded ∂Ω is compact we may extract a �nite covering{
Wi := B 1

ni

(xi)
}n

i=0
of ∂Ω and functions {φi}ni=1 smooth on Wi such that

∥u− φn∥Wk,p(Wi)
≤ ϵ

n+ 2
.

Now we take an open set Wn+1 ⋐ Ω such that {Wi}n+1
i=0 cover Ω. By the

local approximation of Theorem 3 we know we can approximate u on Wn+1

by some φn+1 ∈ C∞
c (Rd)

∥u− φn+1∥Wk,p(Wn+1)
≤ ϵ

n+ 2
.

Finally, we take a smooth partition of unity {ρi}n+1
i=0 subordinate to {Wi}n+1

i=0

and a bump function η ∈ C∞
c (Rd) which is equal to 1 on Ω and is supported

on
⋃n+1

i=0 Wi (see example 5) and set

φ := η
n+1∑
i=0

ρiφi ∈ C∞
c (Ω).

This gives the desired approximation

∥u− φ∥Wk,p(Ω) ≤
n+1∑
i=0

∥ρi(u− φi)∥Wk,p(Wi)
≤ ϵ.

This concludes the proof.

In contrast to Theorem 5, Theorem 6 shows that Sobolev functions on smooth
bounded domains can be approximated by functions that are also smooth

on the boundary of the domain Ω. This will prove fundamental in the
next section. Both to extend them to the whole of Rd and to restrict them
to ∂Ω.



8 Extensions and restrictions

Using the approximation of Sobolev functions by functions smooth on the
boundary we can extend functions in W k,p(Ω) to the whole of Rd. However,
the extension is not unique.

Theorem 7 (Extension theorem). Let Ω ⊂ Rd be a bounded open set with
Ck boundary where k ∈ N+. Then for all p ∈ [1,∞) . Then, given an
open set W with Ω ⋐ W there exists a continuous operator

E : W k,p(Ω) → W k,p(Rd); E : Ck(Ω) → Ck(Rd).

such that

Eu =

{
u on Ω

0 on W c
.

We call Eu an extension of u to Rn.

Proof. We work �rst in the upper half-space (the canonical example of a
manifold with boundary)

Hd =
{
x = (x1, . . . , xd) ∈ Rd : xd ≥ 0

}
.

That is, we suppose that there is some open set Ω′ ⊂ Rd such that

Ω = Ω′ ∩Hd
>0.

Where

Hd
>0 = int(Hd) =

{
x = (x1, . . . , xd) ∈ Rd : xd > 0

}
.

By Theorem 6 we also give ourselves an epsilon of room by supposing that
u ∈ Ck(Ω). We de�ne the extension of u to Ω′ as

Eu(x) =

{
u(x) xd ≥ 0∑k+1

j=1 ajuj(x− jed) xd < 0
.

We will have Eu ∈ Ck(Ω′) as long as we can get the derivatives to match up
on the boundary {xd = 0} ∩ Ω′. That is, as long as aj verify

k+1∑
j=1

(−j)laj = 1, l = 0, 1, . . . , k.



The above is a system of k+1 equations with k+1-unknowns aj. Its matrix
is the Vandermonde matrix (which is invertible). As a result, the system
may be solved to extend u. By the form of Eu we have the bound

∥Eu∥Wk,p(Ω′) ≤ c ∥u∥Wk,p(Ω) .

Where c := (k + 1)l+1max {1, ∥a∥∞}. Working now in the general case for
Ω, we may cover the compact Ω by a �nite amount of bounded open sets
Ωi ⊂ W such that

Φi : Ωi
∼−→ Ω′

i and Φi : Ωi ∩ Ω
∼−→ Ω′

i ∩Hd.

Where Ω′
i are open in Rd and Φi are Ck di�eomorphisms. By the previous

case, we can extend u′
i := u ◦ Φ−1

i ∈ Ck(Ω′
i ∩ Hd) to functions ũ′

i ∈ Ck(Ω′
i)

and then transform back to the original space to get

ũi := ũ′
i ◦ Φi ∈ Ck(Ωi).

Where

∥ũi∥Wk,p(Ωi)
≲ ∥ui∥Wk,p(Ω) . (7)

The hidden constant depending only on c, ∥Φi∥Ck(Ωi)

∥∥Φ−1
i

∥∥
Ck(Ω′

i)
. Next, us-

ing a partition of unity subordinate to {Ωi}ni=1 we glue the local extensions
together to form an extension to all of Ω

ũ :=
n∑

i=1

ρiui ∈ Ck(Ω).

The desired extension can now be obtained by multiplying ũ with a bump
function η that is supported in W and equal to 1 on Ω.

Eu := ηũ ∈ Ck(Rd).

By (7) we have that

∥Eu∥Wk,p(Rd) ≲ ∥u∥Wk,p(Ω) .

As a result, E is a (bounded) linear operator. So far we had considered
u ∈ Ck(Ω). Now, since by Theorem 6 the space Ck(Ω) is dense in W k,p(Ω)
we may extend E to a linear operator on the whole ofW k,p(Ω). A veri�cation
shows that E is also bounded as an operator from Ck(Ω) to Ck(Rd). This
concludes the proof.

https://en.wikipedia.org/wiki/Vandermonde_matrix


Exercise 19 (Restriction). Under the conditions of Theorem 7 it holds that

W k,p(Ω) = W k,p(Rd)
∣∣
Ω
; Ck(Ω) = Ck(Rd)

∣∣
Ω
.

That is, functions in W k,p(Ω), Ck(Ω) are equal to the restriction of functions
in W k,p(Rd), Ck(Rd) respectively.

Hint. Given u ∈ W k,p(Ω) we can extend it to Eu ∈ W k,p(Rd) by the just
proved extension theorem 7. By de�nition u = Eu|Ω. The case u ∈ Ck(Rd)
is identical.

Using extensions also gives us a way to de�ne the Sobolev spaces Hs(Ω) when
the exponent s is real valued.

De�nition 11. Given a bounded open set Ω with boundary of type Ck with
k ∈ N+, we de�ne for all real s ∈ [0, k]

Hs(Ω) := Hs(Rd)
∣∣
Ω
.

To further generalize this de�nition to domains where restriction is not pos-
sible one needs to use complex interpolation (see for example [2] pages 321-
333).

9 Trace theorem

As we already discussed, a PDE often incorporates boundary information
such as u|∂Ω = 0. This is well de�ned if u is continuous, however, if u ∈
W k,p(U), and is thus only de�ned almost everywhere, then u|∂U is a priori
not well de�ned. The following theorem remedies this issue.

Theorem 8 (Trace). Let Ω be a bounded open set of Rd with C1 boundary.
Then, there exists a continuous linear operator

T : W 1,p(U) → Lp(∂U).

Such that Tu = u|∂Ω for all u ∈ C(Ω) ∩W 1,p(Ω).

Proof. As in previous results, the trick is to suppose �rst u is smooth, work
locally, and then obtain a global result using a partition of unity and the
density in Theorem 6.

https://en.wikipedia.org/wiki/Interpolation_space


Given x0 ∈ ∂Ω we take a open set U ⊂ Rd containing x0. Flattening out the
boundary by Φ : U ≃ U ′ where necessarily the boundary is preserved

Φ : U ∩ ∂Ω
∼−→ U ′ ∩ ∂Hd,

and using the extension theorem 7 to extend u′ := u ◦ Φ to ũ′ with compact
support K ⊂ Rd we obtain by the divergence theorem∫

U ′∩∂Hd

|u′|p ≤
∫
∂Hd

|ũ′|p =
∫
Hd

∂d |ũ′|p ≤
∫
Hd

p |ũ′|p−1 |∂du| ≲ ∥ũ′∥pW 1,p(Hd) .

Where in the second inequality we used the chain rule and in the last Hölder's
inequality. Since Φ−1 is Ck and by the continuity of the extension we obtain
what we are looking for in

∥u∥Lp(U∩∂Hd) ≲ ∥ũ′∥W 1,p(Hd) ≲ ∥u′∥W 1,p(U ′∩Hd) ≲ ∥u∥W 1,p(U∩Ω) (8)

We had supposed u smooth, now taking a �nite covering {Ui}ni=1 of ∂Ω (this
is possible by compactness of ∂Ω) and taking a subordinate partition of unity
ρi we conclude from (8) that∫

∂Ω

|u|p =
n∑

i=1

∫
Ui∩∂Ω

|u|p ≲
n∑

i=1

∥u∥pW 1,p(Ui∩Ω) = ∥u∥pW 1,p(U) .

That is,

∥Tu∥Lp(∂Ω) ≲ ∥u∥W 1,p(U) .

Using Theorem 6 to extend T continuously to W k,p(Ω) = C∞
c (Rd)|Ω con-

cludes the proof.

De�nition 12. We de�ne the trace of u ∈ W k,p(Ω) as Tu. We also use the
notation

u|∂Ω := Tu.

To get an estimate on the trace we paid 1-degree of regularity. We can
do better and only pay 1/p degrees of regularity. This uses the theory of
Sobolev�Slobodeckij spaces which we will not develop here. In the case p = 2
we can use Hölder spaces Hs(Ω) to get the improved result.

https://en.wikipedia.org/wiki/Divergence_theorem#:~:text=space%5Bedit%5D-,We,-are%20going%20to%20prove
https://en.wikipedia.org/wiki/Trace_operator#For_p_=_1:~:text=%5Bedit%5D-,A%20more,-concrete%20representation%20of


Theorem 9. For all real s > 1/2 the trace operator is a continuous operator

T : Hs(Ω) → Hs− 1
2 (Ω).

Proof. Straightening out the boundary and using the extension operator as
in the trace theorem 8, it is su�cient to work in the case where u is smooth
and de�ned on Hd. By Fourier inversion, if we write ξ = (ξ′, ξd)

T̂ u(ξ′) =

∫
R
û(ξ) dξd.

So, by Cauchy Schwartz∣∣∣T̂ u(ξ)∣∣∣2 ≤ ∫
R
|û(ξ)|2 ⟨ξ⟩2s dξd

∫
R
⟨ξ⟩−2s dξd. (9)

The change of variables ξd → ⟨ξ′⟩ ξd shows that∫
R
⟨ξ⟩−2s dξd = ⟨ξ′⟩−2(s− 1

2
)

∫
R
⟨ξd⟩−2s dξd ≲ ⟨ξ′⟩−2(s− 1

2
)

(10)

Where in the inequality it was used that s > 1/2. We deduce from (9) and
(10) on taking norms that

∥u∥Hs−1/2(Rd−1) ≲ ∥u∥Hs(Rd) .

Which concludes the proof.

A particularly useful space of functions related to the trace operator is the
following

De�nition 13. We de�ne the space of functions with trace zero as

W k,p
0 (U) := C∞

c (U) ⊂ W k,p(U).

Where the closure is with respect to the topology on W k,p(U).

Exercise 20. Show that for all u ∈ W k,p
0 (Ω)

u|∂Ω = 0.

Hint. Use the continuity of the trace operator.



The converse to Exercise 20 holds but is far from trivial.

Proposition 3. Let Ω be a bounded open set with C1 boundary. Then

W k,p
0 (Ω) =

{
u ∈ W k,p(U) : Tu = 0

}
.

The proof is very technical, see [5] page 274 for the details.

Being able to approximate functions in W k,p
0 (U) by smooth functions com-

pactly supported inside of U gives us many more tools. For example, a
function u in W k,p

0 (U) can be extended by zero to obtain an element ũ in
W k,p(Rd) even for non-smooth unbounded domains.

Exercise 21 (Extension trace 0). Let U be an open set, and de�ne

ũ :=

{
u on U

0 on U c
.

Then

E : W k,p
0 (U) → W k,p(Rd); u → ũ

is a linear with ∥E∥ = 1.

Hint. It is immediate that ∥ũ∥Wk,p(Rd) = ∥ũ∥Wk,p(U) for u ∈ C∞
c (U). As a

result, we can extend E by density to the closure C∞
c (U) in W k,p(U). Which

by de�nition is W k,p
0 (U).

Observation 4. The fact that we can extend functions in W k,p
0 (U) for arbi-

trary U allows one to derive results that when stated for the whole of W k,p(U)
require U to be smooth so that it is possible to extend U .

Exercise 22 (Integration by parts 1). Let U be any open set and consider
u ∈ W 1,p

0 (U), v ∈ W 1,p′(U) then∫
U

(∂iu)v = −
∫
U

u∂iv.

Hint. Give yourself an epsilon of room and take limits.



Exercise 23 (Integration by parts 2). Let Ω be a bounded open set of Rd

with C1 boundary and consider u ∈ W 1,p(Ω), v ∈ W 1,p′(Ω) then∫
Ω

(∂iu)v = −
∫
Ω

u∂iv +

∫
∂Ω

uvni d.

Where n is the outward pointing unit normal vector to ∂Ω.

Hint. Give yourself an epsilon of room, apply the divergence theorem and
take limits.

10 Sobolev embeddings and inequalities

Sobolev inequalities are relationships that bound the norm of u in di�erent
function spaces depending on how di�erentiable and integrable u is. For
example, such a relationship could look like

∥u∥W l,p∗ (Ω) ≤ ∥u∥Wk,p(Ω) . (11)

By considering the rescaling u(λx), performing a change of variables, and
taking λ to ∞ we see that for such a relationship to hold it is necessary that

l − d

p∗
= k − d

p
. (12)

The case k = l + 1 gives rise to the following de�nition

De�nition 14. The Sobolev conjugate of 1 ≤ p < d is p∗ de�ned by

1

p∗
=

1

p
− 1

d
.

Note that p < p∗. The idea behind inequalities such as (11) is to cash in some
di�erentiability for some integrability. The main results used to do this are
based on the fundamental theorem of calculus. First, we need the following
lemma.

Lemma 2 (Loomis-Whitney inequality). Let d ≥ 1, let f1, . . . , fd ∈ Lp
(
Rd−1

)
for some p ∈ (0,∞], and de�ne

Fd (x1, . . . , xd) :=
d∏

i=1

fi (x1, . . . , xi−1, xi+1, . . . , xd) .

https://en.wikipedia.org/wiki/Divergence_theorem#:~:text=space%5Bedit%5D-,We,-are%20going%20to%20prove


Then,

∥Fd∥Lp/(d−1) ≤
d∏

i=1

∥fi∥Lp(Rd−1) . (13)

Proof. The case d = 2 is immediate by Fubini. The general case follows from
induction on d . We write (x1, . . . xd+1) = (x′, xd+1)

∥Fd+1∥Lp/d(Rd+1) =

(∫
R

(∫
Rd

Fd(x)
p
dfd+1(x

′)
p
d dx′

)
dxd+1

) d
p

(14)

≤

(∫
R

(∫
Rd

Fd(x)
p

d−1 dx′
) d−1

d

dxd+1

) d
p

∥fd+1∥Lp(Rd)

≤

(∫
R

d∏
i=1

∥fi(xd+1)∥
p
d

Lp(Rd)
dxd+1

) d
p

∥fd+1∥Lp(Rd) (15)

Where in the �rst inequality we applied Cauchy-Schwartz with q = d/(d −
1), q′ = d. Now applying the general version of Hölder's

∥g1 · · · gn∥L1 ≤ ∥g1∥Lp1 · · · ∥g1∥Lpn ;
1

p1
+ · · · 1

pn
= 1.

to gi := ∥fi(·)∥
p
d

Lp(Rd)
∈ Ld(R) gives

∫
R

d∏
i=1

gi ≤
d∏

i=1

∥gi∥Ld(R) .

Substituting into (14) concludes the proof.

Using the Loomis-Whitney inequality and the fundamental theory of calculus
gives us our �rst Sobolev inequality

Theorem 10 (Sobolev-Gagliardo-Niremberg). Given 1 ≤ p < d it holds that

∥u∥Lp∗ (Rd) ≲ ∥∇u∥Lp(Rd) . (16)



Proof. By density (see Theorem 4), it is enough to take u ∈ C∞
c (Rd). Ap-

plying the fundamental theorem of calculus gives

|u|m =

∫ ·

−∞
∂i |u|m dxi ≤

∫
R
|u|m−1 |∂iu| dxi =: fi, ∀i = 1, . . . , d.

Multiplying all these inequalities together gives

|u|md ≤
d∏

i=1

fi.

Applying the Loomis-Whitney inequality (13) �with p = 1� and Hölder's
inequality shows

∥u∥md
Lmd/(d−1)(Rd) ≲

d∏
i=1

∥∥um−1∂iu
∥∥
L1(Rd)

≤ ∥u∥(m−1)d

L(m−1)p′ (Rd)
∥∇u∥dLp(Rd→Rd) (17)

It remains to choose m such that

md

d− 1
= (m− 1)p′ =⇒ m =

(d− 1)p∗

d
=

dp− p

d− p
≥ 1.

Substituting into (17) gives

∥u∥mLp∗ (Rd) ≲ ∥u∥m−1
Lp∗ (Rd) ∥∇u∥Lp(Rd→Rd) .

This concludes the proof.

Exercise 24. Given p < d
k
de�ne pk∗ by 1

pk∗
= 1

p
− k

d
. Then,

∥u∥
Lpk∗ (Rd)

≲
∥∥∇ku

∥∥
Lp(Rd)

Hint. Apply induction on k using Theorem 10.

The result can also be further generalized An estimate for the endpoint d = p
can also be achieved

Theorem 11. It holds that

W 1,d(Rd) ↪→ Lq(Rd), ∀q ∈ [d,+∞)

https://en.wikipedia.org/wiki/Gagliardo%E2%80%93Nirenberg_interpolation_inequality


Proof. Setting p = d in our estimate (17) gives

∥u∥mLmd/(d−1)(Rd) ≲ ∥u∥m−1
L(m−1)d/(d−1)(Rd) ∥∇u∥Ld(Rd→Rd) .

Applying Young's product inequality with p = m
m−1

, p′ = m and using that
raising to a power is convex gives

∥u∥Lmd/(d−1)(Rd) ≲ ∥u∥L(m−1)d/(d−1)(Rd) + ∥∇u∥Ld(Rd→Rd) , ∀m ≥ 1. (18)

Taking m = d above gives

∥u∥Ld2/(d−1)(Rd) ≲ ∥u∥W 1,d(Rd) .

We also trivially have ∥u∥Ld(Rd) ≤ ∥u∥W 1,d(Rd) so by interpolation we can
extend the inequality to

∥u∥Lq(Rd) ≲ ∥u∥W 1,d(Rd) , ∀q ∈
[
d,

d2

d− 1

]
. (19)

We now iterate, taking m = d+ 1 gives

∥u∥L(d+1)d/(d−1)(Rd) ≲ ∥u∥Ld2/(d−1)(Rd) + ∥∇u∥Ld(Rd→Rd)

Which combined with (19) and interpolating gives

∥u∥Lq(Rd) ≲ ∥u∥W 1,d(Rd) , ∀q ∈
[
d,

(d+ 1)d

d− 1

]
.

Iterating this process (taking m = d+ 2, . . . ,m = d+ k in (18)) shows that

∥u∥Lq(Rd) ≲ ∥u∥W 1,d(Rd) , ∀q ∈
[
d+ k,

(d+ k)d

d− 1

]
.

From this, we conclude the result.

Exercise 25. It holds that

W k, d
k (Rd) ↪→ Lq(Rd), ∀q ∈ [d/k,+∞)

Hint. Use induction on k with Theorem 11.

https://en.wikipedia.org/wiki/Riesz%E2%80%93Thorin_theorem#:~:text=%5Bedit%5D-,First,-we%20need%20the


Note that the constant in our above estimate blows up on iterating. As a
result, we do not expect

W 1,d(Rd) ↪→ L∞(Rd).

This holds if and only if d = 1. Otherwise, we require more integrability.
However, this extra integrability can be converted into regularity in the style
of Sobolev spaces. First, we recall the following de�nition

De�nition 15. Let U ⊂ Rd be open and γ ∈ R+, we de�ne the Holder
space

Ck,γ(Rd) :=
{
u ∈ Ck(U) : ∥u∥Ck,γ(U) < ∞

}
.

Where the Holder norm is de�ned as

∥u∥C0,γ(U) := sup
x ̸=y∈Rd

|u(x)− u(y)|
|x− y|γ

∥u∥Ck,γ(U) := ∥u∥Ck(U) +
∑
|α|=k

∥Dαu∥C0,γ(U) .

For γ = 1 the Ck,γ is the space of functions with bounded derivatives up to
order k and whose k-th order derivatives are Lipschitz continuous.

Theorem 12 (Morrey). Let p > d and set γ = 1 − d
p
. Then, the following

inclusion is continuous

W 1,p(Rd) ↪→ C0,γ(Rd).

The proof is technical and can be found in [3] page 282.
As is logical, as p approaches d from above the extra di�erentiability we get
goes to 0. Furthermore, no matter how much integrability we cash in, we can
never get more di�erentiability than we started with, so γ → 1 as p → ∞.

Exercise 26 (Sobolev regularity). Let p > d and set γ = 1 − d
p
. Then, the

following inclusion is continuous

W k,p(Rd) ↪→ Ck,γ(Rd).

https://nowheredifferentiable.com/2023-01-29-PDE-1-Fourier/#:~:text=.%C2%A0%E2%97%BB-,As%20a%20corollary,-of%20this%2C%20we


Hint. This holds for the case k = 1. We now proceed by induction. Since
∇u ∈ W k−1,p(Rd → Rd) by hypothesis of induction we obtain

∇u ∈ Ck−1,γ̃(Rd → Rd); γ̃ := k − 1− d

p
.

In consequence,

u ∈ Ck−1+1,γ̃+1(Rd) = Ck,γ(Rd).

Combining the three results gives

Theorem 13 (Rellich-Kondrachov). Let Ω either be Rd or bounded with Ck

boundary, then following inclusions are continuous

W k,p(Ω) ↪→ Lq(Ω), ∀q ∈ [1, pk∗) and p <
d

k

W k,p(Ω) ↪→ Lq(Ω), ∀q ∈ [p,∞) and p =
d

k

W k,p(Ω) ↪→ Ck,γ(Ω) ↪→ Ck(Ω), and p >
d

k

Where pk∗ is de�ned by the relation 1
pk∗

= 1
p
− k

d
and γ = 1 − p

d
. Further-

more, the �rst, second, fourth, and third composed with fourth inclusions are
compact.

Proof. The fact that the above inclusions are continuous follows by our three
Sobolev inequalities in Exercises 24,25,26 together with the extension theo-
rem 7.
The compactness of the embeddings requires reduce to showing that the unit
ball in each of the embedded spaces is equicontinuous.

1. For the �rst inclusion we will use Fréchet�Kolmogorov's theorem. First
we note that we can suppose q > p as Lq(Ω) ↪→ Lp(Ω). Let B1 be the
unit ball in W k,p(Ω). By continuity of the inclusion B1 is bounded in
Lq(Ω) and it only remains to show that B1 is equicontinuous. We have
that

∥τhu− u∥Lp(Ω) ≤ ∥∇u∥Lp(Ω) |h| , ∀u ∈ W 1,p(Ω).

Where the above is known to be true for smooth functions by the
fundamental theorem of calculus and extends by density to W k,p(Ω)

https://en.wikipedia.org/wiki/Compact_embedding
https://en.wikipedia.org/wiki/Equicontinuity
https://en.wikipedia.org/wiki/Fr%C3%A9chet%E2%80%93Kolmogorov_theorem


(we recall translation is continuous on Lp for p < ∞). The above also
holds for pk∗ and since p < q < pk∗ we can write

1

q
=

α

p
+

1− α

pk∗
.

By interpolation we obtain that

∥τhu− u∥Lq(Ω) ≤ ∥∇u∥αLp(Ω) ∥∇u∥1−α

Lpk∗ (Ω)
|h| , ∀u ∈ W 1,p(Ω).

This shows equicontinuity and concludes the �rst case.

2. The compactness of the second inclusion is proved identically.

3. For the compactness of the last inclusion we use Arzelà�Ascoli theorem
on a �derivative by derivative basis�. By de�nition of Hölder norm,

|Dαu(x)−Dαu(y)| ≲ ∥u∥Ck(Rd) |x− y| , ∀ |α| < k

|Dαu(x)−Dαu(y)| ≲ ∥u∥Ck,γ(Rd) |x− y|γ , ∀ |α| = k.

As a result, for each |α| ≤ k the family

Aα :=
{
Dαu : u ∈ B1 ⊂ Ck,γ(Ω)

}
,

is equicontinuous. So by Arzelà�Ascoli we may extract a sequence un

such that Dαun converges uniformly to some u(α). By the fundamental
theorem of calculus we conclude that u(α) = Dαu(0) and as a result
un → u ∈ Ck(Ω). That is, the unit ball B1 ⊂ Ck,γ is sequentially
compact and thus compact when embedded in Ck(Ω). This proves this
point.

4. The composition of the inclusions on the last line is compact as the
composition of a compact and a continuous operator is compact. This
concludes the proof.

The main utility of all these compact embeddings is that given a sequence un

whose derivatives are bounded in certain Lp norms we can extract convergent
subsequences in appropriate spaces. We end this post (modulo appendices)
with one of the most useful inequalities which we will make use of in future
posts

https://en.wikipedia.org/wiki/Riesz%E2%80%93Thorin_theorem#:~:text=the%20sumset%20formulation.-,Riesz%E2%80%93Thorin,-interpolation%20theorem%C2%A0%E2%80%94%C2%A0
https://en.wikipedia.org/wiki/Arzel%C3%A0%E2%80%93Ascoli_theorem#:~:text=%2C%20%C2%A7IV.6.7


Theorem 14 (Poincaré inequality). Let u ∈ W 1,p
0 (U) where U is bounded in

one direction. Then

∥u∥W 1,p(U) ≤ C ∥∇u∥W 1,p(U→Rd) .

Proof. By density (which holds by de�nition of W k,p
0 (U)) of it is su�cient to

reason for u ∈ C∞
c (U) and pass to the limit. By relabeling we may suppose

U is bounded along the xd axis. That is, for some �nite a < b

U ⊂ Rd−1 × [a, b].

The idea is to use the fundamental theorem of calculus together with the
compact support of u. This allows us to rewrite

|u(x)| =
∣∣∣∣∫ xd

a

∂du(x
′, t) dt

∣∣∣∣ ≤ (∫
R
|∂du(x′, t)|p dt

) 1
p

(xd − a)
1
p′ .

Taking Lp(Rd) norms above gives

∥u∥Lp(Rd) ≤ ∥∂du∥Lp(Rd)

p′

p+ p′
(b− a)

p+p′
p′ ≲ ∥∇u∥Lp(Rd→Rd) .

This concludes the proof.

A Convolutions and regularization

The convolution of two functions f, g can be thought of as �blurring� f by
averaging it against g. In the case where g is smooth, this blurring has
the e�ect of smoothing out any sharp edges and irregularities in f . This
allows us to approximate irregular functions by smooth ones and serves as
an important technical tool in our analysis.

De�nition 16 (Convolution of functions). Given f and g we de�ne the
convolution of f, g to be the function f ∗ g

f ∗ g :=

∫
f(y)g(x− y) dy (20)

The de�nition given by (20) is purposefully vague. We still need to specify
what spaces f, g belong to so that f ∗g is a well-de�ned element (of a further
unspeci�ed space). This can be done as follows.



Proposition 4 (Young's convolution inequality). Consider the de�nition in
(20) and let p, q, r ∈ [1,∞]. Then it holds that

1. If f ∈ L1(Rd) and g ∈ Lp(Rd) then f ∗ g ∈ Lp(Rd) with

∥f ∗ g∥Lp(Rd) ≤ ∥f∥L1(Rd) ∥g∥Lp(Rd) .

2. Suppose that

1

p
+

1

q
= 1 +

1

r
; f ∈ Lp(Rd); g ∈ Lq(Rd).

Then f ∗ g ∈ Lr(Rd) with

∥f ∗ g∥Lr(Rd) ≤ ∥f∥Lp(Rd) ∥g∥Lq(Rd) .

In any of the above cases f ∗ g = g ∗ f .

Proof. The �rst point follows from the triangle inequality for the Bochner
integral (in this context this is also called Minkowski's integral inequality) as∥∥∥∥∫

Rd

f(y)g(· − y) dy

∥∥∥∥
Lp(Rd)

≤
∫
Rd

∥f(y)g(· − y) dy∥Lp(Rd) = ∥f∥L1(Rd) ∥g∥Lp(Rd) .

To see the second point �x f and de�ne the linear operator Tfg := f ∗ g.
Then, for g ∈ L1(Rd) and g ∈ Lp′(Rd) respectively

∥Tfg∥Lp(Rd) ≤ ∥f∥Lp(Rd) ∥g∥L1(Rd) ; ∥Tfg∥L∞(Rd) ≤ ∥f∥Lp(Rd) ∥g∥Lp′ (Rd) ; .

Where the �rst inequality is point one and the second follows from Cauchy
Schwartz. Now applying Riesz-Thorin's interpolation theorem concludes the
proof.

The de�nition of convolution can be extended to even more settings, for ex-
ample, suppose that g is the density of some �nite (possibly signed) measure
µ and f is bounded, then

f ∗ µ(x) := f ∗ g(x) =
∫
Rd

f(x− y)g(y) dy =

∫
Rd

f(x− y) dµ(y).
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De�nition 17 (Convolution of function with measure). Let µ be a �nite
signed Borel measure on Rd and f ∈ Lp(Rd) then we de�ne the convolution

f ∗ µ(x) :=
∫
Rd

f(x− y) dµ(y) ∈ Lp(Rd).

Note that, once more by the triangle inequality, the convolution is well-
de�ned with

∥f ∗ µ∥Lp(Rd) ≤ ∥f∥Lp(Rd) ∥µ∥TV .

Now, if we consider f, g to be the densities of some �nite (signed) measures
µ, ν then we obtain that for bounded h

(h, µ ∗ ν) :=
∫
Rd

h(x)f ∗ g(x) dx =

∫
Rd

∫
Rd

h(x+ y)f(x)g(y) dx dy (21)

=

∫
Rd×Rd

f(x+ y) d(µ⊗ ν)(x, y).

That is, the convolution of µ with ν is the pushforward of the product mea-
sure µ⊗ ν with the sum S(x, y).

De�nition 18 (Convolution of measures). Let µ, ν be two �nite signed mea-
sures on B(Rd). Then the convolution of µ ∗ ν is the pushforward

µ ∗ ν := S#(µ⊗ ν).

The language of random variables can give some good motivation for this

Example 3. Let X, Y be random variables with law µ, ν then X+Y has law
µ∗ν. Furthermore, if X, Y are independent and µ, ν are absolutely continuous
with densities f, g then X + Y is absolutely continuous with density f ∗ g.

Proof. The �rst part is by de�nition of pushforward. To show that µ ∗ ν has
density f ∗ g it su�ces to read the reasoning in equation (21) backward.

Through the random variable interpretation, we also see that if µ, ν have all
their mass in A,B then their convolution must have all its mass in A + B.
That is,

Lemma 3. Let f, g, µ, ν be such that the convolution is well-de�ned. Then

supp(f ∗ g) = supp(f) + supp(g); supp(µ ∗ ν) = supp(µ) + supp(ν).

https://en.wikipedia.org/wiki/Pushforward_measure


Proof. This follows directly from the de�nition of convolution.

One technical point is that to de�ne the convolution of two objects it is
required that they be de�ned globally. For example if U ⊊ Rd, we can't
convolve f ∈ Lp(Rd) with g ∈ L1(U) as the integral∫

Rd

f(y)g(x− y) dy

requires we evaluate f on all of Rd. One workaround is, if ϕ ∈ L1(Rd) with
supp(ϕ) ⊂ B(0, ϵ) we can extend f to be equal to some g ∈ Lp(R) outside
of U

f̃(x) =

{
f(x) x ∈ U

g(x) x ̸∈ U
.

Then, the convolution f̃ ∗ g is well de�ned and equal to

f̃ ∗ ϕ(x) =
∫
B(x,ϵ)∩U

f(y)ϕ(x− y) dy +

∫
B(x,ϵ)∩Uc

g(y)ϕ(x− y) dy.

As we can see, the convolution in general depends on how we extend f outside
of U . However, it is independent of the extension for x in

Uϵ := {x ∈ U : d(x, ∂U) < ϵ} .

With

f̃ ∗ ϕ(x) =
∫
B(x,ϵ)

f(y)ϕ(x− y) dy, ∀x ∈ Uϵ.

For this reason, we will employ the following notation.

De�nition 19. Given f ∈ Lp(U) and ϕ ∈ L1(Rd) with supp(ϕ) ⊂ B(0, ϵ)
we de�ne f ∗ ϕ ∈ Lp(Uϵ) as

f ∗ ϕ(x) :=
∫
B(x,ϵ)

f(y)ϕ(x− y) dy.

Convolution of distributions with test functions can also be considered. A
similar reason to previously leads us to the following de�nition



De�nition 20. Let T ∈ D′(Rd) and φ ∈ C∞
c (Rd). Then we de�ne the

convolution T ∗ φ ∈ D∗(Rd) by

T ∗ φ(ϕ) := T (φ̃ ∗ ϕ) where φ̃(x) := φ(−x).

In the above we can also swap all occurrences of C∞
c (Rd) and D′(Rd) by

S(Rd) and S ′(Rd) respectively. An interesting fact is that the convolution of
a distribution with a function is itself a function.

Proposition 5. Convolution of distribution and test function is smooth:

1. Let φ ∈ D(Rd), w ∈ D′(Rd) then ω ∗ φ ∈ C∞
loc(Rd).

2. Let φ ∈ S(Rd), w ∈ S ′(Rd) then ω ∗ φ ∈ C∞
loc(Rd).

The previous de�nitions all go through word by word in the case where we
substitute the domain from Euclidean space Rd to a LCA group with Haar
measure µ. For example

f ∗ g(x) :=
∫
G

f(y)g(x− y) dµ(y).

A typical case is when G = Td with the Lebesgue measure or G = Zd with
the counting measure. These respectively give

f ∗ g(x) =
∫
Td

f(y)g(x− y) dy; f ∗ g(k) :=
∑
j∈Zd

f(j)g(k − j).

The same results are also obtained. In fact, save the commutation f∗g = g∗f ,
the above results hold even if G is not Abelian. In this case, one considers
the left or right Haar measure. See for example [6] 444R.

B Smoothing in Lp

In this section, we examine how convolution can be used to approximate
functions by smoother ones. This is of great practical use as it allows us to

1. Consider an appropriate space of functions for our problem, smooth or
otherwise.

https://nowheredifferentiable.com/2023-01-29-PDE-1-Fourier/#:~:text=Since-,every,-locally%20compact%20Hausdorff
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2. Perform formal manipulations using the standard rules of calculus as if
all functions in this space were smooth and compactly supported until
we obtain a desired result.

3. Pass to the limit to recover the expression for the whole class of func-
tions.

A crucial tool in this program is the following:

De�nition 21. We say that a family of functions {ϕn}∞n=1 ⊂ L1(Rd) is an
approximation to unity if

� Norm 1: ∥ϕn∥L1(Rd) = 1.

� Decreasing support: supp(ϕn) ⊂ B(0, 1/n).

If ϕn ∈ C∞
c (Rd) we say that ϕn are smooth.

Observation 5. The above de�nition is frequently also given letting the index
set range over ϵ ∈ R+ and taking supp(ϕϵ) ⊂ B(0, ϵ). This is equivalent and
simply leads to taking ϵ → 0 instead of n → ∞.

The �rst question is whether a smooth approximation to the identity exists.
In the following example, we answer this in the a�rmative.

Example 4. Let φ ∈ C∞
c (Rd) then

ϕn :=
nd

∥φ∥L1(Rd)

φ(nx)

is a smooth approximation of the identity. Additionally,

φ(x) := exp

(
1

|x|2 − 1

)
1B(0,1) ∈ C∞

c (Rd) (22)

By Proposition 4 (L1(Rd), ∗) is a Banach algebra. However, it is a non-unital
one. That is there does not exist an element e such that

f ∗ e = f, ∀f ∈ L1(Rd).

However, we will soon see that in a limiting sense, an identity for the convo-
lution exists. First, we need the following lemma.

https://en.wikipedia.org/wiki/Banach_algebra


Lemma 4. The space Cc(Rd) is dense in Lp(Rd) for all p ∈ [1,∞).

Proof. Consider f ∈ Lp(Rd). If f = 1A for some measurable set A with �nite
measure then, by the outer and inner regularity of the Lebesgue measure we
may take U,K open and compact respectively with U ⊂ A ⊂ K and

λ(K)− λ(A) < ϵ.

Where we wrote µ for the Lebesgue measure on Rd. By Urysohn's lemma
there exists a continuous function φ ∈ Cc(U) such that φ ≤ 1 and φ is 1 on
K. Then,

∥f − φ∥Lp(Rd) ≤ ϵ.

Since the space of simple functions is dense in Lp(Rd) this concludes the
proof.

The name �approximation of unity� in De�nition 21 is justi�ed by the fol-
lowing proposition.

Proposition 6. Let f ∈ Lp(Rd) where p ∈ [1,∞) and consider g ∈ Cc(Rd)
and an approximation to unity ϕn. Then it holds that

lim
n→∞

g ∗ ϕn = g ∈ Cc(Rd); lim
n→∞

f ∗ ϕn = f ∈ Lp(Rd).

Proof. Consider ϵ > 0. Using that ϕn has mass 1 and is supported on
B(0, 1/n).

g ∗ ϕn(x)− g(x) =

∫
B(0, 1

n
)

(g(x− y)− g(x))ϕn(y) dy.

Now taking norms and n large enough gives

∥g ∗ ϕn − g∥L∞(Rd) ≤
∫
B(0, 1

n
)

∥g(· − y)− g∥L∞(Rd) ϕn(y) dy ≤ ϵ. (23)

Where in the last inequality we used that g is uniformly continuous and ϕn

has mass 1. Since ϵ > 0 was any, this shows the �rst part of the proposition.
We now prove the second part. By Lemma 4 we can choose g such that

∥g − f∥Lp(Rd) < ϵ.
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Now, since Kn := supp(g ∗ ϕn) ⊂ K +B(0, 1/n), whose measure is bounded
by some M > 0, the inequality in (23) shows that

∥g ∗ ϕn − g∥p
Lp(Rd)

≤
∫
Kn

ϵp dy ≤ Mϵp.

Now using the triangle inequality and Young's convolution inequality 4 gives

∥f ∗ ϕn − f∥Lp(Rd) ≤ ∥(f − g) ∗ ϕn∥Lp(Rd) + ∥g ∗ ϕn − g∥Lp(Rd)

+ ∥g − f∥Lp(Rd) ≤ ϵ+M
1
p ϵ+ ϵ.

This shows the second part and concludes the proof.

The question is why would we want to approximate a function by its convo-
lutions with some smooth functions the answer is given in the following two
results.

Proposition 7 (Smoothing e�ect). Let f ∈ L1
loc
(Rd) and ϕ ∈ C∞

c (Rd). Then
f ∗ ϕ ∈ C∞(Rd) with

Dα(f ∗ ϕ) = f ∗Dαϕ, ∀α ∈ Nd.

Furthermore, if f is compactly supported then f ∗ ϕ ∈ C∞
c (Rd).

Proof. By induction, it su�ces to consider the case Dα = ∂i for some 1 ≤
i ≤ d. This case can be proved by a di�erentiation under the integral sign
as, given |x| ≤ M

∂xi
f(y)ϕ(x− y) ≤ f(y) ∥ϕ∥C∞(K) 1K+B(0,M)(y) ∈ L1(Rd)

Where K is the support of φ.

Observation 6 (Local smoothing). The smoothing e�ect also holds when f
is only de�ned on some open set U . Then, with the notation of De�nition
19, f ∗ ϕ ∈ C∞(Uϵ) with an identical proof showing

Dα(f ∗ ϕ) = f ∗Dαϕ on Uϵ.

Theorem 15. It holds that

C∞
c (Rd) = Lp(Rd); C∞

c (Rd) = Cc(Rd).

Where the closures are respectively in the Lp(Rd) and the uniform topology
(given by ∥·∥∞).

https://nowheredifferentiable.com/2023-01-29-PDE-1-Fourier/#:~:text=Proposition%202%20(-,Differentiation,-under%20the%20integral


Proof. This follows immediately from Proposition 6 and Proposition 7.

Exercise 27. Let U be an open subset of Rd, show that

C∞
c (U) = Lp(U); C∞

c (U) = Cc(U).

Hint. Let f be the non-smooth function to approximate, multiply it �rst by
a molli�er ηn ∈ C∞

c (U) equal to 1 in Vn ⊂ U (see Example 5). Convolve to
get

φn := (fηn) ∗ ρn.

Show as in Theorem 15 that φn converges appropriately.

The above can be generalized to non-Euclidean spaces

Theorem 16. Let (X,µ) be a measure space such that X is locally convex
and Hausdor� and µ is inner and outer regular. Then

Cc(X) = Lp(X).

Suppose additionally that X is a group, that µ is the left or right Haar mea-
sure, and that there exists an approximation to unity ϕn on X. Then

C∞
c (X) = Lp(X); C∞

c (X) = Cc(X).

Proof. The �rst part can be proved by the same method as in Lemma 4 (note
that Uryshon's lemma still holds for LCH spaces). The second part follows
by copying the proof of Propositions 6 and 7.

The assumption of the existence of an approximation of unity is perhaps the
most delicate, but it can be applied for example in the following case.

Corollary 1. It holds that

C∞(Td) = Lp(Td); C∞(Td) = C(Td).

Note that the second part of Corollary 1 also follows from the Stone-Weierstrass
theorem. Similar results hold in the space of distributions.

Proposition 8. Let T ∈ D′(Rd) and φn be an approximation to unity. Then

lim
n→∞

T ∗ ϕn = T ∈ D′(Rd).

As a result, C∞
c (Rd) = D′(Rd).

The proof can be found in [1] page 308.

https://planetmath.org/ApplicationsOfUrysohnsLemmaToLocallyCompactHausdorffSpaces
https://en.wikipedia.org/wiki/Stone%E2%80%93Weierstrass_theorem
https://en.wikipedia.org/wiki/Stone%E2%80%93Weierstrass_theorem


C Global to local and back again

Often it is advantageous to work locally and then reason in the general case
by some kind of approximation. A useful tool in this respect are bump

functions.

De�nition 22. A bump function (also called cuto� function) is a func-
tion η ∈ C∞

c (Rn).

Constructing bump functions that have some desired support is a tool we
use frequently throughout. Here we provide two examples to show how this
may be done. Other constructions are of course possible.

Example 5. Given two open sets V, U with V ⋐ U there exists η ∈ C∞
c (Rd)

with support in U , equal to 1 on V and with 0 ≤ η ≤ 1.

Proof. Since V ⋐ U , there exists a compact K with

V ⊂ K ⊂ U ; du := d(U,K) > 0; dV := d(V,K) > 0.

Now, by Urysohn's lemma there exists a continuous function f ∈ Cc(Rn)
such that 0 ≤ φ ≤ 1 and φ is 1 on K. If we now take an approximation of
unity {ϕn}∞n=1 and choose N large enough so that min {dU , dV } > 1

N
we can

obtain the desired function as η = f ∗ ϕN .

Example 6. There exists a sequence of ηn ∈ C∞
c (Rd) such that

ηn(x) =

{
1 if |x| ≤ n

0 if |x| ≥ 2n
.

And ∥ηn∥Ck(Rd) ≤ ∥η1∥.

Proof. Let η1 ∈ C∞
c (Rd) be any (for example that of (22)). Then we can

take ηn(x) := η(x/n).

In the opposite direction. One is often in the situation where it is possible to
derive some local properties for a given object (think manifolds). To recover
a global result one needs some way to piece together the local results. A
useful tool in this respect is partitions of unity.

De�nition 23. Given a manifold M and an o pen covering {Uα}α∈J of M
we say that {ρi}i∈I is a partition of unity on {Uα}α∈J if:

https://en.wikipedia.org/wiki/Urysohn%27s_lemma#:~:text=for%20any%20two-,non%2Dempty,-closed%20disjoint%20subsets


1. supp(ρi) ⊂ Uα for some α ∈ J .

2. For each x ∈ M , it holds that x ∈ supp(ρα) for only a �nite amount
of α ∈ I.

3.
∑

i∈I ρi = 1.

Partitions of unity are often used in di�erential geometry as follows

1. Work in some open subset Rn (or the upper half space Rn
+ if our mani-

fold has boundary) to prove the existence of some object g with desired
properties.

2. Cover the manifold M with coordinate charts Uα and translate the
euclidean result via the identi�cation with Uα to obtain locally de�ned
gα.

3. Obtain a globally de�ned object g by using the partition of unity to
piece together the local objects

g =
∑
α∈I

ραgα.

In addition to the approximation and extension theorems in Section 8, par-
titions of unity can be used to show that: every manifold has a Riemannian
metric, show that a function is smooth on some none-open set S ⊂ M i� it
is the restriction of a smooth function de�ned on a neighborhood of S, prove
the existence of an outward pointing vector on manifolds with boundary,
de�ne integration over an orientable manifold M , prove Stoke's theorem.

Theorem 17. Let M be a smooth manifold (in particular we assume M
is Hausdor�), then every open covering {Uα}α∈J has a partition of unity
{ρn}∞n=1.

The proof is based on the existence of bump functions (something we have
already proved for Rd) and is straightforward in the case that M is com-
pact. The general case can be reduced to the compact setting by obtaining
a covering by relatively compact open sets {Ui}∞i=0 of M such that

Vi ⋐ Vi+1.

And then working with the compact Vi+1 \ Vi. See [7] Appendix C for the
details.

https://en.wikipedia.org/wiki/Riemannian_manifold
https://en.wikipedia.org/wiki/Riemannian_manifold
https://en.wikipedia.org/wiki/Generalized_Stokes_theorem


D Manifolds with boundary

We will be de�ning di�erential equations on open domains Ω ⊂ Rn. In this
case Ω will be a �manifold with boundary� whose regularity will determine
what results we have access to. The prototypical example of a manifold with
a boundary is the upper half space

Hd :=
{
x = (x1, . . . , xd) ∈ Rd : xd ≥ 0

}
.

Here the inequality is not strict so that the boundary of Hd is included in
itself. Since Hd is not open we need to de�ne what is meant by saying that
a function is di�erentiable on such a set.

De�nition 24. Let S ⊂ Rd be an arbitrary set. We say that a function f :
S → R is k-times di�erentiable at p if there exists a function f̃ : Rd → R
which is k times di�erentiable at p and such that f̃ = f on S.

De�nition 25. If f is k-times di�erentiable at every point of S we say that
f ∈ Ck(S).

Exercise 28. Show that f ∈ Ck(S) if and only if there exists an extension

f̃ ∈ Ck(Rd) of f which is equal to f on S.

Hint. Use a partition of unity.

A manifold with boundary M is just a generalization of Hd, where we impose
that M is �locally equal� to Hd. That is, there exists a covering of M by open
sets Vα and a collection of homeomorphisms with the subspace topology

from Hd

Φα : Vα
∼−→ Φ(Vα). (24)

And where for compatibility we impose that for each α, β the function

Φβ ◦ Φ−1
α : Φα(Vα ∩ Vβ) 7−→ Φβ(Vα ∩ Vβ). (25)

Are di�eomorphisms on Hd (again with the subspace topology). Here A =
{(Uα,Φα)} is an atlas of M . We say that A is Ck if the di�eomorphisms in
(25) are Ck (see De�nition 24).

De�nition 26. We say that (M,A) is a Ck manifold with boundary if
M is a second countable Hausdor� space and A is a Ck atlas.



The boundary of M is its points that are mapped to the boundary {xd = 0}
in Hd.

De�nition 27. Given a point p ∈ M we say that p is a boundary point if
for some (and thus every chart) Φα(p) ∈ ∂Hd. We call the set of all boundary
points the boundary of M and denote it by ∂M .

Exercise 29. Show that the restricted atlas Φα|∂M makes ∂M a d − 1 di-
mensional manifold without boundary.

Hint. By de�nition of boundary

Φα|∂M : Vα ∩M → ∂Hd−1 ≃ Rd−1. (26)

And the coordinate changes are Ck as the restriction of a Ck map is Ck.

In our case we will always take M to be a subset of Rd, in this case, dif-
ferent variations of the above de�nition are possible. For example, by the
inverse function theorem and Exercise 28, we can extend the functions Φα to
di�eomorphisms on Uα open in Rd so that (24)-(26) now read

Φα : Uα
∼−→ Φ(Uα); Φα : Uα ∩M

∼−→ Φα(Uα) ∩Hd. (27)

Additionally, by the implicit function theorem there exists for each coordinate
set Uα functions γα ∈ Ck(Rd−1) such that, relabeling the coordinates and
decreasing the size of Uα if necessary,

∂M ∩ Uα = {x ∈ Uα : xd = γα(x1, . . . , xd−1)} (28)

Let us write x = (x′, xd), by the Taylor expansion

Φα(x
′, γα(x

′) + ϵ) = Φα(x) +
∂Φ

∂xd

(x)ϵ+O(∥ϵ∥2).

We deduce that, once more reducing the size of Uα if necessary and depending
on the sign of ∂dΦ on Uα, one and only one of the following two hold

(M \ ∂M) ∩ Uα = {x ∈ Uα : xd > γα(x1, . . . , xd−1)} (29)

(M \ ∂M) ∩ Uα = {x ∈ Uα : xd < γα(x1, . . . , xd−1)} .

The equivalent formulations in (27) and in (28)-(29) are used in the main
exposition. Finally, in our case, we will typically take M = Ω where Ω ⊂ Rd

is some open set. In this case, we adopt the following terminology.



De�nition 28. We say that an open set Ω ⊂ Rd has Ck boundary of Ω is
a Ck manifold with boundary.

In the above case, the topological and manifold boundaries of Ω necessar-
ily coincide as homeomorphisms map topological boundaries to topological
boundaries.
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